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Abstract

In the design of high-frequency (or fast-impulse) capacitors required to hold off high voltages, one can use
high-dielectric-constant materials (e.g., ceriain ceramics). This paper considers some of the high-frequency
problems of such capacitors and techniques to mitigate them.
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1. Introduction

In some kinds of high-power electromagnetic guiding structures blocking capacitors are used to keep long-
time-duration electric fields at low values on parts of the structure. There is a need, however, for these blocking
capacitors to act more as short circuits for fast pulses with correspondingly high frequencies. Just how low an

impedance such capacitors can represent is then an important design consideration.

There are various ways to make capacitors, such as alternating sheets of metal and dielectric, including
high-frequency designs [4, 5]. Another type consists of blocks of high-diclectric-constant dielectrics (e.g., certain
ceramics) in various shapes [2]. With relative dielectric constants of a few thousand, these should behave like
metals at appropriate high frequencies. Here we give some approximate analysis to quantify this.



2. Circularly Cylindrical Rod

As illustrated in Fig. 2.1 let there be a dielectric rod of radius « and length £ The length is not significant

in the analysis since this is treated on a per-unit-length basis. Ifs constitutive parameters are

4 =y free space permeability
& = gy >> gy permittivity 2.1
o = 0 conductivity

The external medium has {(appropriate to gas or oil).

B=i
£ = g >>.§) ' 2.2)
og=190

For convenience we have the relative dielectric constant

& = 2 > 1 . 2.3

g
For present purposes we can use gy in the above.

Treating the tod as an electromagnetic boundary value problem, the incident wave can have various
configurations. An interesting case has a TEM wave propagating along one of the metal rods when it encounters the
dielectric rod and propagates along it to reach a second metal rod. Another metal conductor (not shown) serves as
the return path for the TEM wave. While serving as a blocking capacitor at low frequencieé we would like it to
behave as a metal rod at high frequencies. Of course, it is not a metal rod but only approximates one.

While the wave may be propagating at a high speed (say ¢) in the external medium, it is propagating at &
much slower speed, &, V2 «< ¢ , in the dielectric. As such it is not propagating significantly in the z direction,
but is propagating approximately radially in the dielectric rod. For this analysis we have cylindrical coordinates
(¥,d.z)as

x = Peos(@) , y = ¥sin(g) | 249
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Fig. 2.1. Circularly Cylindrical Rod Capacitor



with the boundary at ¥ = a.

Neglecting the z variation we have in the diclectric (similar to the analysis in [1])
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We then have an impedance per unit length at ¥ = a of

1 E, _ jZy Jo(ka)
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For small arguments the Bessel functions give
Jo(kea) = 1 + Offkyal’)
Fo% 4
i (kya) = %{l ¥ 0([k2a]2):|
(o) = 122 2 - 27
Z'(jo) - [l + 0([k20] )] 2.7
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S = [xazsz] = susceptance (reciprocal capacitance) per unit length

This verifies the well-known capacitance at low frequencies.



As frequency is increased the behavior deviates from that of a simple capacitor. The impedance per unit
length tends to zero at the first zero of Jy, ie,

kya = ma[,uogz]llz = 0lel/?= 24 : 2.8)
¢

Further increasing the frequency changes the sign of Z' (becoming inductive). The magnitude increases, going to
co at the first zero of J3,ie,

kra = 38 ' 2.9

For a simple example one might have

a=1lcm
g = 2000
§ =~ 1.8x10! Flm! (2.10)
C=[s¢" = 56pF
f= -2?’— = kzaz—s;”z =~ 0.26 GHz at first Z' zero
T Ta

Note that dielectric losses at high frequency have been neglected. Such would make k; complex and
avoid the high-impedance problem at k3a = 3.8. Nevertheless, this analysis indicates a possible high-frequency

problem.



3. Array of Rods

In order to improve the high-frequency performance of the rod capacitor, the radius can be decreased, but at
the expense of lowering the capacitance. An alternate approach is to use some number N of rods retaining the
total cross section za® by reducing the radius of each rod to aN;U 2 , thereby raising the characteristic frequencies
by a factor NL/2. | "

As indicated in Fig. 3.1, let us place the rod-capacitor center lines on a circular cylinder of radius b with
equal spacing in angle ¢, = 27/N;. The array of rods is terminated at both ends in metal with radius of order b or
greater. Restrict b << 1 so that we can neglect the impedance per unit length contribution by the dielectric
medium & (other than as a simple capacitive contribution). This is possible due to the large values of s,
wavelengths in the & dielectric being much latger than those in the g, dielectric rods.

The above considerations are for the case that equal displacement currents are desired in each arm,
corresponding to a uniform current distribution around circularly cylindrical rods terminating the rod array at both
ends. If this distribution should not be uniform, but like that for a circularly cylindrical conductor parallel to a
ground plane, then one can vary the angles separating the varions rods. Considerations in a previous paper [3] can
be used to optimize the distribution of the rods. '
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Fig. 3.1. Array of Rod Capacitors
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: N Capacitors in Circular Formation.




4. Circolarly Cylindrical Shell

Carrying the argnment farther let us now distribute the &, dielectric in a circularly cylindrical shell (a
tube) as illustrated in Fig. 4.1. Letting

¥ = inner radins
Y5 = outer radius

A = V5 —¥= thickness @

o
it

%[‘I’z + V) ] = average radius

we can compute f " for this configuration.

One can perform the calculation in cylindrical coordinates and obtain Bessel-Function formulae. For
present purposes we can estimate the parameters for A << 5, neglecting the displacement current for radius
¥ < ¥p. This gives

S Zy 1+ e_j2k2A . 22
zZ = = — j—= cot(fnA 4.3
UO) = oy | ik~ o MY @3
For low frequencies this gives
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For comparison to the single rod we have the same capacitance. So we equate the cross-section areas as

2abA = 7ra2

2 ' @49
bA = L - -
2
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Fig. 4.1, Cylindrical Shell Capacitor
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Making b large makes A small for a given cross-section area. One can also reduce £ to reduce the cross-section

area for a given capacitance. However, the minimum £ may be constrained by high-voltage-standoff considerations.

As o is increased, Z' has a zero at

:A 3
oA = o] —0=g/?=2 | 4.6)

Further increasing the frequency there is a pole at

A = x @7
For a simple example, keep the cross-section area the same as in (2.10)

27bA = ©° 4.8

but let

2 .
b =3cm , A:%zlﬂmm 4.9

The first Z’ zero is then at
f = ;L _kAc 2 _ L V2 16z (4.10)
z _ .

AT 4A

This is ideally corrected to account for the space inside the tube, especially at the higher frequencies.
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5. Concluding Remarks

There are then some high=frequency effects with which one needs to be concerned. These can be pushed
to higher frequencies by the previously discussed techniques of multiple rods, a cylindrical shell, or a combination
of these. Other cross-section shapes (such as star or asterisk shaped) can also be considered to give short paths (like
A) for fields to propagate into the dielectric. For the analysis, a frequency-independent real diclectric constant has
been assumed. Such capacitive materials may also have some high-frequency losses which will mitigate the

problem to some degree.
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